Welcome  

 

LF f(20-25) [id=LFB0097]

Producer Organism : Native Protein : Production Method :
Cow Lactoferrin (LF) Synthetic
Activity : Antibacterial, antifungal
Target Organisms :

Gram-positive: Bacillus subtilis CECT498 (MIC=48 然), Staphylococcus aureus JCM2151 (MIC=50 然).

Gram-negative: Escherichia coli IID861 (MIC=50 然).

Yeast: Active against Saccharomyces cerevisiae Maurivin AWRI350, Dekkera bruxellensis wild strain, Pichia membranifaciens wild strain, Zygosaccharomyces bailii wild strain, Zygosaccharomyces bisporus wild strain at 16 然, Candida albicans TIMM0134 (MIC=75 然), Candida albicans KSC1 (MIC=75 然).

Filamentous fungi: Penicillium digitatum PHI-26 (MIC= 8 然), Penicillium italicum PHI-1 (MIC= 8 然), Penicillium expansum PHI-65 (MIC= 16 然), Penicillium sp. PHI-8 (MIC= 32 然), Aspergillus nidulans biA1 (MIC= 8 然), Botrytis cinerea 8 (MIC= 16 然), Fusarium oxysporum CECT2866 (MIC= 16 然).

NOTE: No activity against Cryptococcus albidus wild strain (>16 然), Escherichia coli K12 W3110, Escherichia coli K12 D21, Escherichia coli K12 D21e19, Escherichia coli K12 D21e7, Escherichia coli K12 D21f1, Escherichia coli K12 D21f2, Escherichia coli MLK53, Escherichia coli MLK1067, Escherichia coli MLK986, Escherichia coli WA707, Escherichia coli WA834 (>2500 然), Escherichia coli DH5a, Saccharomyces cerevisiae FY1679 (>48 然), Alternaria sp. PHI-44, Magnaporthe grisea PR-9 (>320 然) .

Description :
Production method: Synthetic.

The hydropathy indexes of LFB0019 and LFB097 do not largely differ from those of LFB0086 and LFB0018 although the hydropathy indexes of LFB0120 and LFB0118 are extremely high. Therefore, it seems that hydrophobicity is not closely associated with antimicrobial activity. In addition to the hydrophobicity, the threedimensional structure seems to largely determine the antimicrobial activity of the peptide (Citation: 1).
Synthetic peptides derived from human and bovine lactoferricin, as well as tritrpticin sequences, were assayed for antimicrobial activity against wild-type Escherichia coli and LPS mutant strains. Antimicrobial activity was only obtained with peptides derived from the bovine lactoferricin sequence (LFH0016, LFH0017, LFH0018, LFH0019 and LFH0020) and peptides corresponding to chimeras of human (LFH0081 and LFH0082) and bovine sequences (LFB0031, LFB0041 and LFB0046). None of the peptides corresponding to different regions of native human lactoferricin showed any antimicrobial activity. The results underline the importance of the content of tryptophan and arginine residues, and the relative location of these residues for antimicrobial activity (Citation: 3).
Length : 6 Mass (Da): 987.45 Common Amino Acids : R
Isolectric Point : 12.8 Net Charge : 3 Absent Amino Acids : ACDEFGHIKLMNPSTVY
Basic Residues : 3 Acidic Residues : 0 Hydrophobic Residues : 2
Polar Residues : 0 Boman Index : -45.64 Hydropathy Index : -3.133
Aliphatic Index : 0 Instability Index : 0 Extinction Coefficient : 11000
Absorbance 280nm : 2200

Wheel representation

Hydrophobicity plot

Red solid plot : values according to the hydrophobicity scale of Kyte and Doolittle (reference paper).
Yellow dashed plot : Experimentally determined hydrophobicity scale for proteins at membrane interfaces(reference paper).
Green dotted-dashed plot : prediction of transmembrane helices (reference paper). In this scale (unlike the others), more negative values reflect greater hydrophobicity.

Multiple Sequence Alignment (MSA)


                      1 [        .         .         . ] 32
  1 LFBNATIVE 100.0%    FKCRRWQWRMKKLGAPSITCVRRAFALECIRA   
  2 LFB0017   100.0%    FKCRRWQWR-----------------------   
  3 LFB0043    93.3%    FKCRRWQWRAKKLGA-----------------   
  4 LFB0052    86.7%    FKCWRWQWRWKKLGA-----------------   
  5 LFB0037    93.3%    FKCARWQWRMKKLGA-----------------   
  6 LFB0040    93.3%    FKCRRWAWRMKKLGA-----------------   
  7 LFB0038    93.3%    FKCRAWQWRMKKLGA-----------------   
  8 LFB0088    96.0%    FKCRRWQWRMKKLGAPSITCVRRAE-------   
  9 LFB0039    93.3%    FKCRRAQWRMKKLGA-----------------   
 10 LFB0062    93.3%    FKCRRAQWRMKKLGA-----------------   
 11 LFB0072    93.3%    FKCRRAQWRMKKLGA-----------------   
 12 LFB0075    93.3%    FKCRRAQWRMKKLGA-----------------   
 13 LFB0078    93.3%    FKCRRAQWRMKKLGA-----------------   
 14 LFB0064    86.7%    FKCRRAQARMKKLGA-----------------   
 15 LFB0117    54.5%    ---RRAAARAKKAG------------------   
 16 LFB0080    86.7%    FKCRRAQARMKKLGA-----------------   
 17 LFB0074    86.7%    FKCRRAQARMKKLGA-----------------   
 18 LFB0077    86.7%    FKCRRAQARMKKLGA-----------------   
 19 LFB0056    93.3%    FKCRRFQWRMKKLGA-----------------   
 20 LFB0059    93.3%    FKCRRFQWRMKKLGA-----------------   
 21 LFB0053    93.3%    FKCRRFQWRMKKLGA-----------------   
 22 LFB0081    93.3%    FKCRRFQWRMKKLGA-----------------   
 23 LFB0055    86.7%    FKCRRFQFRMKKLGA-----------------   
 24 LFB0058    86.7%    FKCRRFQFRMKKLGA-----------------   
 25 LFB0061    86.7%    FKCRRFQFRMKKLGA-----------------   
 26 LFB0083    86.7%    FKCRRFQFRMKKLGA-----------------   
 27 LFB0041    93.3%    FKCRRWQARMKKLGA-----------------   
 28 LFB0063    93.3%    FKCRRWQARMKKLGA-----------------   
 29 LFB0076    93.3%    FKCRRWQARMKKLGA-----------------   
 30 LFB0079    93.3%    FKCRRWQARMKKLGA-----------------   
 31 LFB0073    93.3%    FKCRRWQARMKKLGA-----------------   
 32 LFB0060    93.3%    FKCRRWQFRMKKLGA-----------------   
 33 LFB0082    93.3%    FKCRRWQFRMKKLGA-----------------   
 34 LFB0057    93.3%    FKCRRWQFRMKKLGA-----------------   
 35 LFB0054    93.3%    FKCRRWQFRMKKLGA-----------------   
 36 LFB0042    93.3%    FKCRRWQWAMKKLGA-----------------   
 37 LFB0115    81.8%    ---RRWQRWMKKLG------------------   
 38 LFB0033   100.0%    FKCRRWQWRMKKLGA-----------------   
 39 LFB0032   100.0%    FKCRRWQWRMKKLGA-----------------   
 40 LFB0031   100.0%    FKCRRWQWRMKKLGA-----------------   
 41 LFB0050    86.7%    FKWRRWQWRMKKLWA-----------------   
 42 LFB0051    80.0%    FKWRRWWWRMKKLWA-----------------   
 43 LFB0049    93.3%    FKCRRWQWRMKKLWA-----------------   
 44 LFB0018   100.0%    FKCRRWQWRM----------------------   
 45 LFB0020   100.0%    FKCRRWQWRMK---------------------   
 46 LFB0045    93.3%    FKCRRWQWRMKALGA-----------------   
 47 LFB0044    93.3%    FKCRRWQWRMAKLGA-----------------   
 48 LFB0097   100.0%    ---RRWQWR-----------------------   
 49 LFB0030   100.0%    FKCRRWQWRMKKLG------------------   
 50 LFB0087   100.0%    FKCRRWQWRMKKLGAPSITCVRRAF-------   
 51 LFB0024    54.5%    YKAWRWAWRWK---------------------   
 52 LFB0025    54.5%    YKAWRWAWRWK---------------------   
 53 LFB0027    36.4%    YRMWRWAWRWR---------------------   
 54 LFB0028    36.4%    YRMWRWRWRWR---------------------   
 55 LFB0026    36.4%    YRAWRWAWRWR---------------------   
 56 LFB0023    63.6%    YKARRWAWRWK---------------------   
 57 LFB0022    72.7%    YKARRWAWRMK---------------------   
 58 LFB0021    81.8%    FKARRWAWRMK---------------------   
 59 LFB0019    90.0%    FKARRWQWRM----------------------   
 60 LFB0036    93.3%    FKARRWQWRMKKLGA-----------------   
 61 LFB0070    93.3%    FKARRWQWRMKKLGA-----------------   
 62 LFB0069    93.3%    FKARRWQWRMKKLGA-----------------   
 63 LFB0068    93.3%    FKARRWQWRMKKLGA-----------------   
 64 LFB0065    93.3%    FKARRWQWRMKKLGA-----------------   
 65 LFB0106   100.0%    ---RRWQWRMKK--------------------   
 66 LFB0029    45.5%    RRWYRWAWRMR---------------------   
 67 LFB0118   100.0%    ----RWQWRM----------------------   
 68 LFB0113    81.8%    ---RRWQWRMRRLG------------------   
 69 LFB0112    72.7%    ---KKWQWKMKKLG------------------   
 70 LFB0114    81.8%    ---KKWQWRMKKLG------------------   
 71 LFB0116    54.5%    ---EEWQWEMEELG------------------   
 72 LFB0048    93.3%    FKWRRWQWRMKKLGA-----------------   
 73 LFB0090    92.0%    FKSRRWQWRMKKLGAPSITSVRRAF-------   
 74 LFB0110    18.2%    ----RRWQWRMKKLG-----------------   
 75 LFB0067    93.3%    FKFRRWQWRMKKLGA-----------------   
 76 LFB0071    93.3%    FKFRRWQWRMKKLGA-----------------   
 77 LFB0066    93.3%    FKFRRWQWRMKKLGA-----------------   
 78 LFB0108   100.0%    ---RRWQWRMKKL-------------------   
 79 LFB0102   100.0%    ---RRWQWRMKK--------------------   
 80 LFB0034    93.3%    AKCRRWQWRMKKLGA-----------------   
 81 LFB0111   100.0%    ---RRWQWRMKKLG------------------   
 82 LFB0104   100.0%    ---RRWQWRMKK--------------------   
 83 LFB0035    93.3%    FACRRWQWRMKKLGA-----------------   
 84 LFB0109   100.0%    ---RRWQWRMKKLG------------------   
 85 LFB0101   100.0%    ---RRWQWRMKK--------------------   
 86 LFB0046    93.3%    FKCRRWQWRMKKAGA-----------------   
 87 LFB0107   100.0%    ---RRWQWRMKK--------------------   
 88 LFB0100   100.0%    ---RRWQWRMKK--------------------   
 89 LFB0047    93.3%    FKCRRWQWRMKKLAA-----------------   
 90 LFB0098   100.0%    ---RRWQWRMKK--------------------   
 91 LFB0105   100.0%    ---RRWQWRMKK--------------------   
 92 LFB0103   100.0%    ---RRWQWRMKK--------------------   
 93 LFB0086   100.0%    FKCRRWQWRMKKLGAPSITCVRRAF-------   
 94 LFB0089   100.0%    FKCRRWQWRMKKLGAPSITCVRRAF-------   
 95 LFB0085   100.0%    FKCRRWQWRMKKLGAPSITCVRRAF-------   
 96 LFB0084   100.0%    FKCRRWQWRMKKLGAPSITCVRRAF-------   
 97 LFB0092   100.0%    FKCRRWQWRMKKLGAPSITCVRRAFA------   
 98 LFB0095   100.0%    -KCRRWQWRMKKLGAPSITCV-----------   
 99 LFB0096   100.0%    --CRRWQWRMKKLGAPSITCV-----------   

100 LFB0093   100.0%    FKCRRWQWRMKKLGAPSITCVRRAFAL-----   

101 LFB0091   100.0%    FKCRRWQWRMKKLGAPSITCVRRAFA------   

102 LFB0119   100.0%    ----------KKLGAPSITCVRRAFA------   
103 LFB0120   100.0%    -------------GAPSITCVRRAF-------   

104 LFB0121   100.0%    ----------------------------CIRA   
105 LFB0094   100.0%    FKCRRWQWRMKKLGAPSITCVRRAFALECIR-   

Citation: 1

A novel bovine lactoferrin peptide, FKCRRWQWRM, suppresses Candida cell growth and activates neutrophils

Cited Entries: LFB0018, LFB0019, LFB0086, LFB0097, LFB0118, LFB0120

Authors:Ueta, E., Tanida, T., Osaki, T.
Journal: The Journal of Peptide Research 2001, 57(3).
Abstract: To identify potent new antifungal agents, the Candida cell growth inhibitory activities of six lactoferrin (Lf) peptides consisting of 6-25 amino acid residues (peptide 1, FKCRRWQWRMKKLGAPSITCVRRAF lactoferricin B; peptide 2, FKCRRWQWRM; peptide 2', FKARRWQWRM; peptide 3, GAPSITCVRRAF; peptide 4, RRWQWR; and peptide 5, RWQWRM) were examined. Of these, peptide 2 strongly suppressed the multiplication of Candida cells, but other peptides showed only weak activities. In two strains of C. albicans, the minimum inhibitory concentration 100 of peptide 2 (17.3+/-2.2 microM and 17.5+/-2.4 microM) was close to that of miconazole (13.0+/-1.7 microM and 13.1+/-1.6 microM) but markedly different from that of amphotericin B (0.52+/-0.09 microM and 0.56+/-0.11 microM). The suppression of Candida cell growth was additively increased by a combination of peptide 2 with amphotericin B and miconazole. Peptides 1, 3, 4 and 5 and Lf suppressed iron uptake by Candida cells, inversely correlated with their Candida cell growth inhibition activities. However, iron uptake was not inhibited by peptide 2. In addition, peptide 2 upregulated Candida cell killing activity of polymorphonuclear leukocytes (PMN) increasing their superoxide generation, protein kinase C activity, p38 MAPK activity and the expression of p47phox. These results indicated that the main antimicrobial activity of the Lf peptides is dependent on the N-terminal half of Lf and that the PMN upregulatory activity of peptide 2 and additive function of peptide 2 with antifungal drugs are useful for prophylaxis and control of candidiasis.
Keywords: Candida albicans; Candida killing; Fkcrrwqwrm; lactoferrin peptides; neutrophils
Citation: 2

Antimicrobial action of synthetic peptides towards wine spoilage yeasts

Cited Entries: LFB0031, LFB0097

Authors:Enrique, M., Marcos, J.F., Yuste, M., Mart容z, M., Valles, S., Manzanares, P.
Journal: International Journal of Food Microbiology 2007, 118(3).
CrossRef External Link
Abstract: The antimicrobial action of selected short synthetic peptides against wine spoilage yeasts such as Cryptococcus albidus, Dekkera bruxellensis, Pichia membranifaciens, Saccharomyces cerevisiae, Zygosaccharomyces bailii and Zygosaccharomyces bisporus has been examined. Peptides analyzed include nine sequence-related antifungal hexapeptides (PAFs) previously developed by a combinatorial approach, and two representative lactoferricin B (LfcinB)-derived peptides. Different peptides had distinct activity profiles. In vitro assays identified the peptides PAF26, PAF36, and LfcinB1731, as having growth inhibitory properties towards several of the yeasts at low micromolar concentrations. Z. bailii and Z. bisporus were the most sensitive yeasts. In addition to their fungistatic activity, the three peptides showed fungicidal properties towards Z. bailii, Z. bisporus, and S. cerevisiae in laboratory growth medium. Remarkably, only LfcinB1731 against Z. bisporus had inhibitory and fungicidal properties in wine at the concentrations assayed, showing that the antimicrobial action of each peptide is dependent on both the food matrix and the target micro-organism. Lack of fungicidal activity of peptides against Z. bailii in wine is related to the presence of salt ions other than divalent cations. On the contrary, fungicidal activity of LfcinB1731 towards Z. bisporus was not significantly affected by wine salts. Our data identify a bioactive peptide from natural origin with potential use against the food spoilage yeast Z. bisporus, and indicate that the application of antimicrobial peptides in wine preservation deserves further investigation.
Keywords: antimicrobial peptide; Lactoferricin B-derived peptide; Spoilage yeasts; Wine; Zygosaccharomyces; S.cerevisiae
Citation: 3

Interactions of lactoferricin-derived peptides with LPS and antimicrobial activity

Cited Entries: LFH0002, LFH0003, LFH0016, LFH0017, LFH0018, LFH0019, LFH0020, LFH0056, LFH0080, LFH0081, LFH0082, LFH0083, LFH0084, LFB0031, LFB0041, LFB0046, LFB0097

Authors:Farnaud, S., Spiller, C., Moriarty, L.C., Patel, A., Gant, V., Odell, E.W., Evans, R.W.
Journal: FEMS Microbiology Letters 2004, 233(2).
Keywords: Lactoferrin; Lactoferricin; Cationic antimicrobial peptides; Lps; Mbc
Citation: 4

A review: The active peptide of lactoferrin

Cited Entries: LFH0024, LFB0084, LFB0089, LFB0097, LFB0178, LFB0179

Authors:Tomita, M., Takase, M., Bellamy, W., Shimamura, S.
Journal: Acta Paediatrica Japonica 1994, 36.
Abstract: A potent antimicrobial peptide, lactoferricin, was found to be generated upon gastric pepsin cleavage of lactoferrin. The active peptide consists mainly of a loop of 18 amino acid residues, derived from the N-terminal region of the lactoferrin molecule, Like various other antimicrobial peptides that display membrane-disruptive properties, it contains a high proportion of basic amino acid residues. A physiologically diverse range of micro-organisms was tested and found to be susceptible to inhibition by this natural peptide including Gram-negative and Gram-positive bacteria, yeasts and filamentous fungi. Its antimicrobial effect against sensitive micro-organisms was lethal. Electron microscopy studies revealed that it induces a profound change in cell ultrastructural features and causes substantial cell damage in bacteria and fungi. These findings suggest the possibility that active peptides of lactoferrin may have a role in the host defense against microbial disease. If produced in substantial quantities in vivo such peptides could have important physiological significance, especially in nursing infants.
Keywords: antimicrobial peptide, lactofemcin, lactoferrin, pepsin digestion.
Citation: 5

Activity and mode of action against fungal phytopathogens of bovine lactoferricin-derived peptides

Cited Entries: LFB0031, LFB0097

Authors:Munoz, A., Marcos, J.F.
Journal: Journal of Applied Microbiology 2006, 101(6): 1199-1207.
CrossRef External Link
PubMed link
Abstract: AIM: To evaluate the activity against fungal phytopathogens of two synthetic peptides derived from the protein bovine lactoferricin: the antibacterial active core of six amino acid residues (LfcinB(20-25)) and an extension of 15 amino acids (LfcinB(17-31)). METHODS AND RESULTS: In vitro activity against fungal pathogens was determined and compared with that against model micro-organisms. Activity was demonstrated against fungi of agronomic relevance. Distinct antimicrobial properties in vitro were found for the two peptides. LfcinB(17-31) had growth inhibitory activity higher than LfcinB(20-25). However, LfcinB(17-31) was not fungicidal to quiescent conidia of Penicillium digitatum at the concentrations assayed, while LfcinB(20-25) killed conidia more efficiently. Microscopical observations showed that the mycelium of P. digitatum treated with LfcinB(17-31) developed alterations of growth, sporulation and chitin deposition, and permeation of hyphal cells. In experimental inoculations of mandarins, both peptides showed limited protective effect against the disease caused by P. digitatum. CONCLUSIONS: LfcinB(20-25) and LfcinB(17-31) peptides were shown to have antimicrobial activity against plant pathogenic filamentous fungi, with distinct properties and mode of action. SIGNIFICANCE AND IMPACT OF THE STUDY: LfcinB(20-25) and LfcinB(17-31) peptides offer novel alternatives to develop resistant plants by molecular breeding.
Keywords: Animals; Cattle; Citrus/microbiology; Lactoferrin/*pharmacology; Microbial Sensitivity Tests; Penicillium/*drug effects/ultrastructure; Peptide Fragments/*pharmacology; Plant Diseases/microbiology; Plants/*microbiology

Go to top